The inclusion of theory errors in PDF fitting

A. Barontini on behalf of the NNPDF collaboration

University of Milan and INFN Milan

QCD 23 Montpellier, 10th July 2023

Outline

1. Introduction and motivations

- What are theory errors?
- How can we estimate them?
- Why including them in a PDF fit is relevant?

2. Methodology and validation

- How can we include MHOU in an NNPDF fit?
- Can we validate our estimation?
- 3. Results

Introduction and motivations

Theory Errors: motivation

- Keep theory errors under control in PDFs determination.
- Missing higher order uncertainties (MHOU).

Theory Errors: definition of the problem

 $F(Q) = \overbrace{\hat{C}(Q)}^{\text{Coeff. funcs}} \otimes \overbrace{U(Q,Q_0)}^{\text{DGLAP op.}} \otimes \overbrace{f(Q_0)}^{\text{PDFs}}$

- Coefficient functions are computed in perturbation theory.
- Anomalous dimensions inside DGLAP operator are computed in perturbation theory.

$$\hat{C}_q^{\text{NLO}} = C^{(0)} + \alpha_s C^{(1)} + \overbrace{\mathcal{O}(\alpha_s^2)}^{\text{MHOU}}, \quad \gamma^{\text{NLO}} = \alpha_s \gamma^{(0)} + \alpha_s^2 \gamma^{(1)} + \overbrace{\mathcal{O}(\alpha_s^3)}^{\text{MHOU}}$$

Theory Errors: estimation

Scale variations

$$\overline{F}^{\mathsf{NLO}}(\mu_f = \kappa_f Q, \mu_r = \kappa_r Q) - F^{\mathsf{NLO}}(\mu_f = Q, \mu_r = Q) = \mathcal{O}(\mathsf{NNLO})$$

Thanks to **RGE**

• Factorization scale: estimates MHOU of anomalous dimensions.

$$U^{\mathrm{NLO}}(Q, Q_0) \rightarrow \overline{U}^{\mathrm{NLO}}(Q, Q_0, \kappa_f)$$

• Renormalization scale: estimates MHOU of coefficient functions.

$$C^{\mathrm{NLO}}(Q) \to \overline{C}^{\mathrm{NLO}}(Q,\kappa_r)$$

Methodology and validation

MHOU in an NNPDF fit: the theory covmat

Central fit

Experimental covariance matrix ${\mathcal C}$

- $\chi^2 \propto (D_i T_i) \mathcal{C}_{ij}^{-1} (D_j T_j).$
- Pseudodata $\propto C$.

MHOU fit

Theoretical covariance matrix ${\cal S}$

- $\chi^2 \propto (D_i T_i)(\mathcal{C} + \mathcal{S})_{ij}^{-1}(D_j T_j).$
 - Pseudodata $\propto C + S$.

Constructing the theory covmat S:

- $\mathcal{S}_{ij} = n_m \sum_{V_m} (\overline{F} F)_{i_a} (\overline{F} F)_{j_b}, \quad i, j \in \mathsf{datapoints}$
- Takes into account correlations between processes.
- MHOU affects relative weights of observables.

- $\kappa_f, \kappa_r \in (0.5, 1.0, 2.0)$
- 7 point prescription

5/12

How does it look like?

 $\mathcal{C}^{\mathsf{NLO}}$

 $\mathcal{S}^{\mathsf{NLO}}$

 $\mathcal{C}^{\mathsf{NNLO}} + \mathcal{S}^{\mathsf{NNLO}}$

 \mathcal{C}^{NNLO}

 S^{NNLO}

Is it reproducing the theory errors?

• Most of the predictions are currently known up to NNLO.

Results

Both central values and uncertainties change: NLO

Both central values and uncertainties change: NNLO

Uncertainties seem to be less affected than central values

The perturbative convergence improves

Central fit

MHOU fit

Phenomenology improvements

11/12

Conclusion

- Thanks to *scale variation* it is possibile to estimate MHOU while, using the theory covmat formalism, it is possible to include them in an PDF fit.
- Including MHOU in a PDF fit is necessary to have faithful uncertainties and central values.
- The perturbative convergence from NLO to NNLO improves when including MHOU in the fit.

Thanks for your attention!

BACKUP SLIDES

The fitting problem: NNPDF methodology

• Neural Network used to provide an unbiased functional form

•
$$f_i = A_i x^{\alpha_i} (1-x)^{\beta_i} NN_i(x, \log x)$$

• Minimization of the loss function

$$\chi^2 = \sum_{ij}^{N_{dat}} (D-P)_i C_{ij}^{-1} (D-P)_j$$
 $C =$ experimental covariance matrix

Theory Errors: estimation

Scale variations

$$\overline{F}^{\mathsf{NLO}}(\mu_F = \xi_F Q, \mu_R = \xi_R Q) - F^{\mathsf{NLO}}(\mu_F = Q, \mu_R = Q) = \mathcal{O}(\mathsf{NNLO})$$

Thanks to **RGE**

• Factorization scale: estimates MHOU of anomalous dimensions.

$$\overline{U}^{\mathsf{NLO}}(Q, Q_0, \xi_F) = \left[1 + \alpha_s(\xi_F Q) \ln\left(\xi_F^2\right) \gamma^{(0)}\right] U^{\mathsf{NLO}}(Q, Q_0)$$

• Renormalization scale: estimates MHOU of coefficient functions.

 $\overline{C}^{\text{NNLO}}(Q,\xi_R) = C^{(0)} + \alpha_s(\xi_R Q)C^{(1)} + \alpha_s^2(\xi_R Q)(C^{(2)} + \ln(\xi_R^2)\beta^{(0)}C^{(1)})$

How to include theory uncertainties in a fit

• Under gaussianity hypothesis

$$P(T|D) \propto \exp(-rac{1}{2}(D_i-T_i)(C+S)_{ij}^{-1}(D_j-T_j))$$

- C, S : experimental and theoretical covariance matrices → just sum them in quadrature.
- T_i : theory predictions, D_i : datapoints.
- In the fit, the covariance matrix is used in:

•
$$\chi^2 = \frac{1}{N_{dat}} \sum^{N_{data}} (D_i - T_i) (C + S)_{ij}^{-1} (D_j - T_j).$$

• Pseudodata generation.

Theory covariance for different processes

- For each point of the theory covariance matrix, we need to consider at most two renormalization scales (plus the usual factorization scale).
- So we need only to change normalization factor as $N_m = n_m/d_m$, where d_m counts the degeneracy given by the irrelevant renormalization scale variations.

Let's define $t = \ln (Q^2/\Lambda^2)$ and $\kappa = \ln (\mu^2/Q^2)$. Then

• Scheme A: The renormalization scale of the anomalous dimensions is directly varied in the evolution:

 $\bar{\gamma}(\alpha_s(t+\kappa),\kappa) = \alpha_s(t+\kappa)\gamma_0 + \alpha_s^2(t+\kappa)(\gamma_1+\kappa\beta_0\gamma_0) + \dots$

• Scheme B: The scale-varied anomalous dimensions are expanded and factorized out from the exponential:

$$\exp\left(\int^{t+\kappa} dt' ar{\gamma}
ight) = \left[1+\kappa\gamma(t+\kappa)+\dots
ight] \exp\left(\int^{t+\kappa} dt'\gamma
ight)$$

so that

$$\bar{f}(\alpha_s(t+\kappa),\kappa) = [1+\kappa\gamma(t+\kappa)+\dots]f(t+\kappa)$$

Different factorization scale-variations schemes

• Scheme C: The scale-dependent terms are factorized into the coefficient function:

$$F(t,\kappa) = C(t)\overline{f}(\alpha_s(t+\kappa),\kappa)$$

= $C(t)[1+\kappa\gamma(t+\kappa)+\dots]f(t+\kappa)$
= $\hat{C}(t,\kappa)f(t+\kappa)$

All these schemes are in principle equivalent but they can differ by subleading terms. Moreover, scheme A is not suited to be used for a fit because it requires the initial PDF to be refitted.