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1. Introduction and motivations

e What are theory errors?

e How can we estimate them?

e Why including them in a PDF fit is relevant?
2. Methodology and validation

e How can we include MHOU in an NNPDF fit?

e Can we validate our estimation?

3. Results
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Introduction and motivations



Theory Errors: motivation
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Theory Errors: definition of the problem

Deep Inelastic Scattering

Coeff. funcs DGLAP op. PDFs

~— = — e A

F(R)= C(Q) ®@U(Q,Q)® f(Qo)

o Coefficient functions are computed in products

perturbation theory.

e Anomalous dimensions inside DGLAP

operator are computed in perturbation theory.

MHOU MHOU
R —~ —
CN0 = €O 4 0, €™ + 0(a?), MO =ay® +a2y® + 0(al)
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Theory Errors: estimation

Scale variations
—NLO NLO
Foour = k@ pr = 5,Q) — F -7 (pr = Q, iy = Q) = O(NNLO)

Thanks to RGE

e [actorization scale: estimates MHOU of anomalous dimensions.
—NLO
UN9(Q, Q) = U (Q, Qo, kr)
e Renormalization scale: estimates MHOU of coefficient functions.

CNO(Q) - T(Q, k)
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Methodology and validation




MHOU in an NNPDF fit: the theory covmat

Central fit MHOQU fit
Experimental covariance matrix C Theoretical covariance matrix S
o X’ o< (Di = TH)C;H(D; = T)). o * o (Di—=T)(C+8); (D —T)).
e Pseudodata x C. e Pseudodata x C + S.

Constructing the theory covmat S:

e S;= nmzvm(f— F).,(F —F);,, i,j € datapoints
e Takes into account correlations between processes.
e MHOU affects relative weights of observables.

e kr, K, € (0.5,1.0,2.0) °

e 7 point prescription Ky
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How does it look like?

CNLO SNLO CNLO +SNLO

Experimental Correlation Matrix Experimental + Theory Correlation Matrix (7 pt)
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Is it reproducing the theory errors?

e Most of the predictions are currently known up to NNLO.

FNNLO __ £NLO
(\/S,-',“L") 100 (FNLO) x 100

—— MHOU (7 pt)
—— NNLO-NLO Shift

% wrt central theory T{”)
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Results




Both central values and uncertainties change: NLO
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Both central values and uncertainties change: NNLO
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Uncertainties seem to be less affected than central values
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Phenomenology improvements
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Conclusion

e Thanks to scale variation it is possibile to estimate MHOU while,
using the theory covmat formalism, it is possible to include them in
an PDF fit.

e Including MHOU in a PDF fit is necessary to have faithful
uncertainties and central values.

e The perturbative convergence from NLO to NNLO improves when
including MHOU in the fit.

Thanks for your attention!
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BACKUP SLIDES



ng problem: NNPDF methodology

e Neural Network used to provide an unbiased functional form

o fi=Aix®(1— x)?NN;(x, log x)

e Minimization of the loss function

Ndat
X2 = E (D—P);CUTl(D—P)j C = experimental covariance matrix
i
gat1.7 GeV
#N3_GlobaL_nonfitedprepro xgrid,
3.0 R
xgrid, o| pdiFKi p O
25 t %
220 N
B xgrid, 0| pdf>FK, p O,
15 1
1075 10 10 10-2 10- 100
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Theory Errors: estimation

Scale variations

FY (i = €rQ, ik = £2Q) — FMO(ur = Q. 11k = Q) = O(NNLO)

Thanks to RGE
e [actorization scale: estimates MHOU of anomalous dimensions.
LO
(Q, Qo,¢F) = [1+ as(&r Q) In (677 V] UNO(Q, Qo)

e Renormalization scale: estimates MHOU of coefficient functions.

NNLO

(Q.€r) = CO+a,(rQ)CM+a2(6rQ)(CP+In (¢2)BO M)
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How to include theory uncertainties in a fit

Under gaussianity hypothesis
1 _
P(T|D) o exp(~5(Di = T)(C + $);(D; = T)))

C, S : experimental and theoretical covariance matrices — just sum

them in quadrature.

T; : theory predictions, D; : datapoints.

In the fit, the covariance matrix is used in:
o = b XM (D - T(C+ $); (D - T)).
e Pseudodata generation.
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Theory covariance for di

e For each point of the theory covariance matrix, we need to consider
at most two renormalization scales (plus the usual factorization
scale).

e So we need only to change normalization factor as N, = n,,/dpm,

where d,, counts the degeneracy given by the irrelevant
renormalization scale variations.
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Different factorization scale-variations schemes

Let's define t = In (Q2/A?) and x = In (1?/Q?). Then

e Scheme A: The renormalization scale of the anomalous dimensions
is directly varied in the evolution:
Has(t + k), k) = as(t + £)70 + aZ(t + K)(71 + K£BoY0) + - .-

e Scheme B: The scale-varied anomalous dimensions are expanded
and factorized out from the exponential:

exp (/W dt’ﬁ) =[1+ry(t+K)+...] exp (/m dt’v)

so that

Flas(t+ k), k) = [L+ry(t+K) +...|f(t+K)
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Different factorization scale-variations schemes

e Scheme C: The scale-dependent terms are factorized into the
coefficient function:

F(t, k) = C(t)f(as(t + k), K)
= C(t)[1+ry(t+rK)+...]f(t+K)
= C(t,m)f(t+r)

All these schemes are in principle equivalent but they can differ by
subleading terms. Moreover, scheme A is not suited to be used for a fit
because it requires the initial PDF to be refitted.
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