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Outline

1. Introduction and motivations

• What are theory errors?

• How can we estimate them?

• Why including them in a PDF fit is relevant?

2. Methodology and validation

• How can we include MHOU in an NNPDF fit?

• Can we validate our estimation?

3. Results
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Introduction and motivations



Theory Errors: motivation

• Keep theory errors

under control in PDFs

determination.

• Missing higher order

uncertainties (MHOU).
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Theory Errors: definition of the problem

F (Q) =

Coeff. funcs︷ ︸︸ ︷
Ĉ (Q) ⊗

DGLAP op.︷ ︸︸ ︷
U(Q,Q0)⊗

PDFs︷ ︸︸ ︷
f (Q0)

• Coefficient functions are computed in

perturbation theory.

• Anomalous dimensions inside DGLAP

operator are computed in perturbation theory.

Deep Inelastic Scattering

productsσ̂q

fq

fq

e±

e±

p

ĈNLO
q = C (0) + αsC

(1) +

MHOU︷ ︸︸ ︷
O(α2

s ), γNLO = αsγ
(0) + α2

sγ
(1) +

MHOU︷ ︸︸ ︷
O(α3

s )
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Theory Errors: estimation

Scale variations

F
NLO

(µf = κfQ, µr = κrQ)− FNLO(µf = Q, µr = Q) = O(NNLO)

Thanks to RGE

• Factorization scale: estimates MHOU of anomalous dimensions.

UNLO(Q,Q0)→ U
NLO

(Q,Q0, κf )

• Renormalization scale: estimates MHOU of coefficient functions.

CNLO(Q)→ C
NLO

(Q, κr )
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Methodology and validation



MHOU in an NNPDF fit: the theory covmat

Central fit MHOU fit

Experimental covariance matrix C
• χ2 ∝ (Di − Ti )C−1

ij (Dj − Tj).

• Pseudodata ∝ C.

Theoretical covariance matrix S
• χ2 ∝ (Di−Ti )(C+S)−1

ij (Dj−Tj).

• Pseudodata ∝ C + S.

Constructing the theory covmat S:

• S ij = nm
∑

Vm
(F − F )ia(F − F )jb , i , j ∈ datapoints

• Takes into account correlations between processes.

• MHOU affects relative weights of observables.

• κf , κr ∈ (0.5, 1.0, 2.0)

• 7 point prescription
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How does it look like?

CNLO

CNNLO

SNLO

SNNLO

CNLO + SNLO

CNNLO + SNNLO
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Is it reproducing the theory errors?

• Most of the predictions are currently known up to NNLO.

(√SNLO
ii

FNLO
i

)
× 100

(
FNNLO
i − FNLO

i

FNLO
i

)
× 100
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Results



Both central values and uncertainties change: NLO
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Both central values and uncertainties change: NNLO

Uncertainties seem to be less affected than central values
9/12



The perturbative convergence improves

Central fit MHOU fit
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Phenomenology improvements
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Conclusion

• Thanks to scale variation it is possibile to estimate MHOU while,

using the theory covmat formalism, it is possible to include them in

an PDF fit.

• Including MHOU in a PDF fit is necessary to have faithful

uncertainties and central values.

• The perturbative convergence from NLO to NNLO improves when

including MHOU in the fit.

Thanks for your attention!
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BACKUP SLIDES
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The fitting problem: NNPDF methodology

• Neural Network used to provide an unbiased functional form

• fi = Aix
αi (1 − x)βi NNi (x , log x)

• Minimization of the loss function

χ2 =

Ndat∑
ij

(D−P)iC
−1
ij (D−P)j C = experimental covariance matrix
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Theory Errors: estimation

Scale variations

F
NLO

(µF = ξFQ, µR = ξRQ)− FNLO(µF = Q, µR = Q) = O(NNLO)

Thanks to RGE

• Factorization scale: estimates MHOU of anomalous dimensions.

U
NLO

(Q,Q0, ξF ) =
[
1 + αs(ξFQ) ln (ξ2

F )γ(0)
]
UNLO(Q,Q0)

• Renormalization scale: estimates MHOU of coefficient functions.

C
NNLO

(Q, ξR) = C (0)+αs(ξRQ)C (1)+α2
s (ξRQ)(C (2)+ln (ξ2

R)β(0)C (1))
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How to include theory uncertainties in a fit

• Under gaussianity hypothesis

P(T |D) ∝ exp(−1

2
(Di − Ti )(C + S)−1

ij (Dj − Tj))

• C , S : experimental and theoretical covariance matrices → just sum

them in quadrature.

• Ti : theory predictions, Di : datapoints.

• In the fit, the covariance matrix is used in:

• χ2 = 1
Ndat

∑Ndata(Di − Ti )(C + S)−1
ij (Dj − Tj).

• Pseudodata generation.

16/12



Theory covariance for different processes

• For each point of the theory covariance matrix, we need to consider

at most two renormalization scales (plus the usual factorization

scale).

• So we need only to change normalization factor as Nm = nm/dm,

where dm counts the degeneracy given by the irrelevant

renormalization scale variations.
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Different factorization scale-variations schemes

Let’s define t = ln (Q2/Λ2) and κ = ln (µ2/Q2). Then

• Scheme A: The renormalization scale of the anomalous dimensions

is directly varied in the evolution:

γ̄(αs(t + κ), κ) = αs(t + κ)γ0 + α2
s (t + κ)(γ1 + κβ0γ0) + . . .

• Scheme B: The scale-varied anomalous dimensions are expanded

and factorized out from the exponential:

exp

(∫ t+κ

dt ′γ̄

)
=
[
1 + κγ(t + κ) + . . .

]
exp

(∫ t+κ

dt ′γ

)
so that

f̄ (αs(t + κ), κ) =
[
1 + κγ(t + κ) + . . .

]
f (t + κ)
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Different factorization scale-variations schemes

• Scheme C: The scale-dependent terms are factorized into the

coefficient function:

F (t, κ) = C (t)f̄ (αs(t + κ), κ)

= C (t)
[
1 + κγ(t + κ) + . . .

]
f (t + κ)

= Ĉ (t, κ)f (t + κ)

All these schemes are in principle equivalent but they can differ by

subleading terms. Moreover, scheme A is not suited to be used for a fit

because it requires the initial PDF to be refitted.
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