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Abstract

We present a collection of tools automating the efficient computation of large sets of theory predictions for high-energy
physics. Calculating predictions for different processes often require dedicated programs. These programs, however,
accept inputs and produce outputs that are usually very different from each other. The industrialization of theory
predictions is achieved by a framework which harmonizes inputs (runcard, parameter settings), standardizes outputs
(in the form of grids), produces reusable intermediate objects, and carefully tracks all meta data required to reproduce
the computation. Parameter searches and fitting of non-perturbative objects are exemplary use cases that require a full
or partial re-computation of theory predictions and will thus benefit of such a toolset. As an example application we
present a study of the impact of replacing NNLO QCD K-factors in a PDF fit with the exact NNLO predictions.
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PROGRAM SUMMARY

Program Title: pineline

Program URL: https://nnpdf.github.io/pineline/

Licensing provisions: GPLv3

Programming language: Python, Rust

Nature of the problem: The computation of theoretical quanti-
ties in particle physics often involves computationally-intensive
tasks such as the calculation of differential cross sections in a
systematic and reproducible way. Different groups often use
different conventions and choices which makes tasks such as
the fitting of physical parameters or quantities very challeng-
ing.

Solution method: We create a pipeline of tools such that a user
can define an observable and a theory framework and obtain
a final object, containing all relevant theoretical information.
Such objects can be then used in a variety of interchangeable
ways (fitting, analysis, experimental comparisons).
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1. Introduction and motivation

Modern particle physics phenomenology is increasingly
reliant on complex theoretical calculations whose accuracy
needs to match very precise measurements, chiefly the ones
from experiments at the Large Hadron Collider (LHC) [1].
An increase in accuracy in those predictions is associated
to the computation of higher orders in the strong and/or
electroweak couplings for partonic cross sections, and usu-
ally performed by numerical programs, which we will call
generators throughout this paper. Since the computations
are very demanding in runtime, memory and storage, these
generators are usually optimized for and can only calculate
a small set of observables, and, furthermore, they often use
different conventions and strategies. Being able to gener-
ate, store and exchange predictions in well-suited formats
for a large set of processes, such that they can be utilized
for a variety of analyses, is therefore advantageous.

In this paper we propose a framework, which we call
pineline, that aims to generate theory predictions by 1)
building a translation layer from a common input format
to each of the different generators and 2) implementing a
common output format for all of them. This is the idea
that we call industrialization: while specific generators are
sufficient for the calculation of single processes, there is
no single generator that is able to calculate all processes,
which are not necessarily limited to processes at the LHC,
but may also include deep-inelastic scattering processes,
for example. By interfacing to multiple generators, and
thus connecting them in an “assembly line” or “pipeline”,
we can easily run the generator best suited for a particular
process, and by having a common input format we can
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easily perform variations, such as changing parameters for
parameter scans.

The motivation for this project was initially fitting par-
ton distribution functions (PDFs) [2–5], but the output
generated by pineline can be used in any fit or analysis
that requires theory predictions. One interesting feature
of a PDF fit in this context is that a very large number of
predictions go into it. This complicates keeping track of
the theory parameters used, for example. While this is a
manageable problem for a few predictions, for a complete
PDF fit it is crucial to make sure that different processes
make use of sets of parameters that are compatible with
each other. Keeping track of the parameters in a central
place makes it then easily possible to be able to rerun pre-
dictions if we want to change (some) of those parameters,
for example.

An important part of this project is the use of inter-
polation grids [6–8], which store theory predictions inde-
pendently of PDFs and the strong coupling, since most of
the output of pineline are interpolation grids. Interfaces
of them to some generators are available [9–11]. Being in-
dependent of PDFs they are ideally suited for PDF fits
where they have been widely adopted, but their use is not
limited to this area.

1.1. Input and output formats

Our goal is to build a framework to generate and store
theory predictions in a standard format from a common
set of inputs. By making the input common across differ-
ent generators we can enforce consistency in theory set-
tings, and, by storing them in a unified format, we ensure
they can be used and analyzed regardless of how they were
computed originally.

To give an impression of the diversity of generators,
in NNPDF4.0 the predictions from more than ten dif-
ferent programs were used: APFEL [12], DYNNLO [13, 14],
FEWZ [15–17], Madgraph5 aMC@NLO [18, 19], MCFM [20–23],
Njetti [24, 25], NNLOjet [26], NLOjet++ [27], Top++ [28],
Vrap [29] and SHERPA [30]. Each of these programs requires
a different set of inputs and parameters to run, and even
when they are similar they are provided in different for-
mats. To mitigate this problem we propose a layout with
a global “theory runcard” which, through an appropriate
generator-dependent translation layer, is fed to the target
program.

The output of the programs is a hadronic observable,
which means it has already been folded with non-perturbative
objects, such as the PDF. By standardizing the output of
all generators to be an interpolation grid we can reanalyze
the same prediction in different scenarios, without requir-
ing an (expensive) recomputation. The evaluation of the
results for different sets of PDFs becomes almost instan-
taneous. As a by-product, it also facilitates parameter fits
for objects that depend on those quantities.

In the context of PDF fitting we can think of two com-
mon scenarios:

• the inclusion of new data points into the fit (coming
from existing or new experiments [31–33])

• investigate the impact of theory settings (such as the
reference value of the strong coupling αs(M

2
Z) [34]).

Both require us to (re-)compute theory predictions for a
large number of data points. To give a concrete example
of the scale of the problem, consider NNPDF4.0 [2] which
fits more than 4500 data points across almost 100 different
datasets. In order to match the increasing demands from
the theory side we require more and more automation to
avoid time-consuming and error-prone manual processes.

In addition, by re-fitting the PDF, any observable that
depends on it will change. However, the partonic cross sec-
tions do not depend on the PDFs. By having them stored
as interpolation grids, one can update all predictions with-
out recomputing the most computationally heavy part of
the observables.

In summary, our goal is to provide a reliable and easy-
to-use workflow that connects the necessary intermediate
steps and that can be scaled to any amount of data.

1.2. Reproducibility

A very important aspect of joining all of these different
generators in a pipeline is the reproducibility of the results:
it must always be possible to trace every prediction back to
its inputs, so that any result can be independently checked
by a third-party, and so that the impact of the change from
a base set of parameters can be gauged. To this end, each
interpolation grid and all intermediate objects contain all
the (meta)data needed to recalculate them and to verify
that both are compatible with each other. In particular,
this includes: the programs used, their version numbers
and random seeds, the value of relevant standard model
parameters, renormalization scheme choices, phase space
cuts, and Monte Carlo uncertainties. We note that many
interpolation grids publicly available on hepdata [35] and
ploughshare [36] do not include this information, though
sometimes it can be inferred from the associated publica-
tions. However often these data are not available, making
comparisons more difficult and time-consuming. We make
that metadata explicitly available in the grids and all other
outputs, from which it can be reliably and easily extracted.

1.3. Open-source software

All the software used in this framework is open source,
to facilitate its distribution, use and maintenance. In ad-
dition to the code, also the data are available online in for-
mats that can be analysed with open-source tools. Specif-
ically, we store all metadata in the widely used YAML1

format while interpolation grids are stored as PineAPPL
grids, which can be interfaced to with many programming
languages.

1https://yaml.org
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Finally, we note that this work can also be seen as a
continuation of the effort already started with the publica-
tion of the NNPDF fitting code [37], giving the community
all necessary tools to reproduce and perform (theory) vari-
ations of NNPDF fits.

2. Interpolation grids, EKOs and FK tables

In the following we describe the deliverables, i.e. the ob-
jects that pineline produces. These are shown in Fig. 1
and are the oval objects, namely 1) PineAPPL grids, 2)
evolution-kernel operators (EKOs) and 3) fast-kernel (FK)
tables. PineAPPL grids, like APPLgrids and fastNLO
tables, store theoretical predictions independently from
their PDFs and the strong coupling. EKOs and FK tables
are tailored towards PDF fits, and translate interpolation
grids to use a single factorization scale.

Let us consider the calculation of a single observable
σ, which for the sake of readability we assume to con-
tain only a single convolution, e.g., for the case of a DIS
structure function. The extension to more convolutions is
straightforward. Eq. (1) shows the defining property of
interpolation grids, namely how convolutions with PDFs
fa(x, µ2) are performed:

σ =
∑
i,j,k

∑
a

fa(xi, µ
2
j )αn+k

s (µ2
j )σ(k)

a (xi, µ
2
j ) . (1)

The grid itself is the set of values
{
σ
(k)
a (xi, µ

2
j )
}

for all par-
tons a and perturbative orders k. Note that the PDFs are
interpolated, and therefore evaluated at specific momen-
tum fractions {xi} and (squared) factorization scales {µ2

j},
just as the partonic cross sections σa. For simplicity, we
also assume here that the renormalization scale equals the
factorization scale (µ2

R = µ2
F), and we refer to this single

scale as µ2.
The interpolation transforms the convolution integral

to a sum, resulting in the grid being a PDF-independent
quantity. In particular, the PDF is expanded over an in-
terpolation basis, with the expansion coefficients being the
values of the PDF on some nodes. This means the specific
interpolation basis is only used in the construction of the
grid, but is not relevant for the construction of the PDF
table (and so not of concern for any PDF user).

For the special case of PDF fits, interpolation grids
are not the most efficient representation yet, given that
the factorization dependence of the PDFs is known per-
turbatively and consequently not fitted. We can therefore
rewrite Eq. (1) to refer only to a single factorization scale
µ0, which in PDF fits is known as the initial scale or the
fitting scale:

σ =
∑
i

∑
a

fa(xi;µ
2
0) FKa(xi;µ

2
0). (2)

The object {FKa(xi;µ
2
0)} is known as a fast-kernel (FK)

table [38] and is a special case of an interpolation grid that

• uses a single factorization scale and

• contains the resummed evolution, thus combining
various perturbative orders and therefore consuming
the dependence on the strong coupling.

An FK table can be computed using evolution kernel op-
erators (EKOs),

FKa(xi;µ
2
0) =

∑
b,j,k,l

αn+k
s (µ2

j ) EKOb,l,j
a,i σ

(k)
b (xl, µ

2
j ), (3)

where EKOb,l,j
a,i are the (linear) operators resulting from

the evolution equations. FK tables are ideally suited for
PDF fits, because the time- and memory-consuming evo-
lutions are done only once and not during the fit.

What we have gained are theoretical predictions {σ},
represented as FK tables, which allow us to perform convo-
lutions with a set of one-dimensional PDFs fa(x;µ2

0) very
efficiently. However, the price we have to pay is that we
need a set of tools that calculate all the required objects:

1. A numerical calculation must generate interpolation
grids for each observable σ that we want to incorpo-
rate in a fit.

2. Next, we need to calculate the EKOs, for the corre-
sponding choices in each observable calculated pre-
viously and the choices made in the fit.

3. Finally, we need to evolve the interpolation grids us-
ing the EKOs to generate FK tables.

In the subsequent sections we briefly review the various
programs dedicated to each step.

2.1. Generating grids: pinefarm

PineAPPL itself is physics agnostic and therefore we
need a parton-level generator to create and actually fill
the grids. This requires a generator to be interfaced to
PineAPPL, which then sends the relevant phase-space in-
formation, i.e. x, µF, a, . . ., to PineAPPL, which collects it

in a space-efficient data structre representing
{
σ
(k)
a (xi, µ

2
j )
}

(see Eq. (1)). Practically, this is done using an interface
offered by PineAPPL, available for the programming lan-
guages C, C++, Fortran, Python and Rust.

As of now, PineAPPL has been interfaced to the fol-
lowing providers:

• Madgraph5 aMC@NLO [18, 19] to calculate LHC
processes, including NLO EW and QCD–EW cor-
rections,

• yadism [39] to calculate NC and CC DIS processes,

• a modified version2 of Vrap [29] for fixed-target Drell–
Yan processes, and

• an interface to MATRIX [40] is in progress.

2https://github.com/NNPDF/hawaiian_vrap
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Figure 1: Flow diagram showing the overall pipeline architecture and deliverables in the case of parameter fits. Arrows in the picture indicate
the flow of information (together with the execution order) and the orange insets on other elements indicate an interface to PineAPPL. The
programs pinefarm and pineko act as interfaces between other programs and the deliverable objects, represented by ovals. These objects can
be PineAPPL grids (orange) or Evolution Kernel Operators (blue).

Furthermore, PineAPPL can convert already existing AP-
PLgrids and fastNLO tables into its own format.

The program pinefarm abstracts away most of the dif-
ferences of different generators. For the generators listed
above it recognizes different input files, which specify the
requested physical observable. It also performs substitu-
tions from a theory parameters database, and directly runs
the generators to produce predictions and collect the de-
sired interpolation grid.

2.2. Generating evolution kernel operators: EKO

While grids
{
σ
(k)
a (xi, µ

2
j )
}

are convoluted with PDFs

evaluated at high scales µ2
j , FK tables

{
FKa(xi;µ

2
0)
}

are

convoluted with PDFs evaluated at the fitting scale µ2
0

reducing the dimensionality thus to just two dimensions
for DIS observables (parton flavor index and momentum
fraction) and four for hadronic observables. This reduction
is possible because the scale dependence of PDFs is given
by the DGLAP equation [41–43].

The software package EKO [44, 45] has been developed
to solve these equations in terms of evolution kernel oper-
ators (EKOs):

fb(xl, µ
2
j ) =

∑
i

∑
a

EKOb,l,j
a,i fa(xi;µ

2
0) (4)

In contrast to similar programs [12, 46–48] EKO focuses
specifically on the direct computation of the operator which
allows the described pipeline to use them to produce FK
tables. Since the operator itself is PDF independent it al-
lows also to reuse existing operators just like reusable tools
in the theory factory.

2.3. Generating FK tables: pineko

Interpolation grids and EKOs are joined together in
pineko to produce FK tables according to Eq. (3). Specif-
ically, pineko has to extract the relevant information from
a grid and a theory runcard (containing all the relevant
theory parameters) and then pick or, if it has not been
calculated yet, compute the required EKO as described in
Section 2.2. Once the EKO is computed, pineko loads the
grid and evolves it using the EKO to produce the final FK
table.

Since Eq. (2) is a special case of Eq. (1), PineAPPL
can also represent FK tables in the same format. This
serves an important purpose: at any point in the pipeline,
a theory prediction, whether it is an interpolation grid or
an FK table, whether it was created using a Monte Carlo
generator or converted from other interpolation grids, is
always a PineAPPL grid. Therefore, the same tools can
be used on all of them.

The separation of the computation of the EKO and
its convolution with the grid is convenient from a com-
putational point of view. To illustrate the problem this
separation solves, consider two possible scenarios:

• studies on the variation of αs(MZ) [34] which require
only the recalculation of EKOs, but not the grids
(Note that in Eq. (1) the strong coupling is factored
out)

• studies on the variation of MW which require only
the recalculation of grids, but not the EKOs.
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Figure 2: Comparison of PDF fits with and without NNLO con-
tributions for FTDY in the determination. In both cases all other
datasets are included at NNLO, the only difference between them is
the exact NNLO contribution for FTDY.

3. Application: K-factors vs. exact predictions

As an application of the previously presented tools,
we have integrated Vrap [29] into pinefarm and inter-
faced it to PineAPPL to produce FK tables for fixed-target
Drell–Yan observables (FTDY) with up to next-to-next-to-
leading order (NNLO) precision in the strong coupling. In
the following we use it to produce fits similar to NNPDF4.0 [2],
which however differ in their treatment of predictions for
the FTDY datasets: E605 [49], E866 [50, 51] and SeaQuest [52].

In particular, we change these predictions

1. to include only NLO,

2. to include NNLO approximately as K-factors (as in
NNPDF4.0) and finally

3. to include NNLO exactly by using interpolation grids.

We note that the bulk of the hadron–hadron collider data
(in particular all Drell–Yan Z and W production at the
LHC) in all PDF fits are still limited to NNLO K-factors.
K-factors are known to suffer from accidental cancella-
tions between different partonic channels [53] and therefore
they should be replaced by interpolation grids to produce
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Figure 3: Comparison of PDF fits in which the FTDY datasets are
included up to NNLO, including the exact predictions in the FK
tables up to NNLO (orange) or up to NLO with K-factors (green).
The orange fit corresponds to that of Fig. 2.

a truly NNLO-accurate PDF fit. However, their use is
widespread when studying complex observables for which
the computation of exact NNLO prediction as a grid might
be very difficult, computationally expensive, or simply not
publicly available.

Fig. 2 shows the result of a fit including FTDY datasets
only at NLO QCD (green), normalized to the results of a
fit with exact NNLO QCD predictions (orange). In Fig. 3
we address the impact of including the NNLO contribution
to the predictions in two different ways: exactly at NNLO
(orange) and approximated by multiplying the NLO re-
sults by a bin-dependent K-factor (green).

In the particular case of FTDY we note already in
Fig. 2 that the effect of NNLO corrections is constrained
to a small portion of the PDF space. In Fig. 3 we can
see that the effect of performing a fit with K-factors does
move the fit in the direction expected from Fig. 2, but that
the K-factors are not able to fully capture the nuances of
the NNLO contribution. A similar behavior is shown by
the plot of the s̄ PDF in the same figures. These contribu-
tions are however compatible within uncertainties and the
impact of using the K-factor approximation in this case is
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Figure 4: Distance plots between using the exact NNLO calculation
and the K-factors as computed per Eq. (48) of Ref. [54]. A distance
of 10 units corresponds in this case to a 1σ difference between the
two PDF sets.

negligible. The quantitive difference between PDFs fitted
from exact NNLO contributions or the K-factors is shown
in Fig. 4; the difference is never significant and stay well
below half a σ.

This is just one example of a phenomenological study
facilitated by the framework presented in this paper. From
a single run of Vrap we have been able to extract NLO,
NLO×K-factor and NNLO (QCD) predictions. All of these
predictions have been evolved to FK tables using the same
NNLO EKOs, producing three different FK tables for three
different fits. On the pineline site (https://nnpdf.github.
io/pineline3) the reader can find a tutorial for the re-
production of these results. An independent PineAPPL
interface to xFitter [55] is also under development4 which
means objects produced by this framework will also be
compatible with fitting frameworks beyond NNPDF.

4. Conclusions and outlook

In this paper we described pineline, which is a collec-
tion of tools that includes pinefarm and pineko. The pro-
gram pinefarm uses existing generators like vrap, yadism
or Madgraph5 aMC@NLO to generate PineAPPL interpola-
tion grids, which in turn can be converted to FK tables
with pineko, which uses EKO. The produced objects are
PineAPPL grids and store theory predictions independently
from their PDFs, so that convolutions with arbitrary PDFs
can be done near instantaneously after generation. The
grids are useful for phenomenological studies, and we have
shown an application in which we estimate the effect of
replacing NNLO QCD K-factors by the exact calculation.

3The exact link for this step-by-step example is: https://nnpdf.

github.io/pineline/examples/vrap
4https://gitlab.cern.ch/fitters/xfitter/-/merge_

requests/288

To name a few more applications, we expect this frame-
work to be beneficial in systematic studies of the effect of
theory settings and theory predictions in PDF studies, in
particular for the following use cases:

• we need to consistently account for theory uncer-
tainties [56], coming either from the hard scattering
process or the PDF evolution, and propagate these
additional constraints into the final PDF delivery.

• Furthermore, it seems necessary to increase the per-
turbative order to next-to-next-to-next-to leading or-
der (N3LO) [57, 58] to match the experimental pre-
cision.

• Finally, we need to consider the interplay of QCD
and QED [59–61] and eventually consider EW cor-
rections in a PDF determination.

In addition, the understanding of the impact of PDF un-
certainties on beyond standard model searches [62] is fun-
damental in the hunt for new physics searches.

The framework is not restricted to the case of unpo-
larized proton PDF determination, but can already be ap-
plied to the extraction of other factorizable objects. Specif-
ically, the extraction of transverse-momentum dependent
PDFs [1, 63, 64] as well as the extraction of fragmenta-
tion functions [65] can be facilitated with the interpolation
grids produced by this pipeline. With the advent of the
EIC projects [32, 33] the refined determination of nuclear
and polarized PDF [66] will also become available.

The framework also provides a standardized way to
compare theory setting in different PDF groups, and al-
lows an easy benchmark between the respective settings [67].
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